Acknowledgement key:
# = DE-SC0008769
% = DE-SC0018277
@ = DE-SC0023160

1. Banan, D., Paul, R. E., Feldman, M. J., Holmes, M. W., Schlake, H., Baxter, I., Jiang, H., & Leakey, A. D. B. (2018). High‐fidelity detection of crop biomass quantitative trait loci from low‐cost imaging in the field. Plant Direct, 2(2), e00041. https://doi.org/10.1002/pld3.41 - #

2. Banf, M., & Rhee, S. Y. (2017a). Computational inference of gene regulatory networks: Approaches, limitations and opportunities. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1860(1), 41–52. https://doi.org/10.1016/j.bbagrm.2016.09.003 - #

3. Banf, M., & Rhee, S. Y. (2017b). Enhancing gene regulatory network inference through data integration with markov random fields. Scientific Reports, 7(1), 41174. https://doi.org/10.1038/srep41174 - #

4. Banf, M., Zhao, K., & Rhee, S. Y. (2019). METACLUSTER—an R package for context-specific expression analysis of metabolic gene clusters. Bioinformatics, 35(17), 3178–3180. https://doi.org/10.1093/bioinformatics/btz021 - #, %

5. Baxter, I. (2020). We aren’t good at picking candidate genes, and it’s slowing us down. Current Opinion in Plant Biology, 54, 57–60. https://doi.org/10.1016/j.pbi.2020.01.006 - %

6. Bossi, F., Fan, J., Xiao, J., Chandra, L., Shen, M., Dorone, Y., Wagner, D., & Rhee, S. Y. (2017). Systematic discovery of novel eukaryotic transcriptional regulators using sequence homology independent prediction. BMC Genomics, 18(1), 480. https://doi.org/10.1186/s12864-017-3853-9 - #

7. Bossi, F., Jin, B., Lazarus, E., Cartwright, H., Dorone, Y., & Rhee, S. Y. (2022). CHIQUITA1 maintains the temporal transition between proliferation and differentiation in Arabidopsis thaliana. Development, 149(11), dev200565. https://doi.org/10.1242/dev.200565 - #, %

8. Brophy, J. A. N., LaRue, T., & Dinneny, J. R. (2018). Understanding and engineering plant form. Seminars in Cell & Developmental Biology, 79, 68–77. https://doi.org/10.1016/j.semcdb.2017.08.051 - #

9. Brophy, J. A. N., Magallon, K. J., Duan, L., Zhong, V., Ramachandran, P., Kniazev, K., & Dinneny, J. R. (2022). Synthetic genetic circuits as a means of reprogramming plant roots. Science, 377(6607), 747–751. https://doi.org/10.1126/science.abo4326 - #

10. Čermák, T., Curtin, S. J., Gil-Humanes, J., Čegan, R., Kono, T. J. Y., Konečná, E., Belanto, J. J., Starker, C. G., Mathre, J. W., Greenstein, R. L., & Voytas, D. F. (2017). A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants. The Plant Cell, 29(6), 1196–1217. https://doi.org/10.1105/tpc.16.00922 - #

11. Chae, L., Kim, T., Nilo-Poyanco, R., & Rhee, S. Y. (2014). Genomic Signatures of Specialized Metabolism in Plants. Science, 344(6183), 510–513. https://doi.org/10.1126/science.1252076 - #

12. Chamness, J. C., Kumar, J., Cruz, A. J., Rhuby, E., Holum, M. J., Cody, J. P., Tibebu, R., Gamo, M. E., Starker, C. G., Zhang, F., & Voytas, D. F. (2023). An extensible vector toolkit and parts library for advanced engineering of plant genomes. The Plant Genome, 16(2), e20312. https://doi.org/10.1002/tpg2.20312 - %

13. Coelho, C. P., Huang, P., Lee, D.-Y., & Brutnell, T. P. (2018). Making Roots, Shoots, and Seeds: IDD Gene Family Diversification in Plants. Trends in Plant Science, 23(1), 66–78. https://doi.org/10.1016/j.tplants.2017.09.008 - #

14. Dale, R., Oswald, S., Jalihal, A., LaPorte, M.-F., Fletcher, D. M., Hubbard, A., Shiu, S.-H., Nelson, A. D. L., & Bucksch, A. (2021). Overcoming the Challenges to Enhancing Experimental Plant Biology With Computational Modeling. Frontiers in Plant Science, 12, 687652. https://doi.org/10.3389/fpls.2021.687652 - %

15. Dinneny, J. R. (2015a). A developmental biologist’s journey to rediscover the Zen of plant physiology. F1000Research, 4, 264. https://doi.org/10.12688/f1000research.6167.1 - #

16. Dinneny, J. R. (2015b). Traversing organizational scales in plant salt-stress responses. Current Opinion in Plant Biology, 23, 70–75. https://doi.org/10.1016/j.pbi.2014.10.009 - #

17. Do, P. T., Lee, H., Nelson‐Vasilchik, K., Kausch, A., & Zhang, Z. J. (2018). Rapid and Efficient Genetic Transformation of Sorghum via Agrobacterium ‐Mediated Method. Current Protocols in Plant Biology, 3(4), e20077. https://doi.org/10.1002/cppb.20077

18. Dorone, Y., Boeynaems, S., Flores, E., Jin, B., Hateley, S., Bossi, F., Lazarus, E., Pennington, J. G., Michiels, E., De Decker, M., Vints, K., Baatsen, P., Bassel, G. W., Otegui, M. S., Holehouse, A. S., Exposito-Alonso, M., Sukenik, S., Gitler, A. D., & Rhee, S. Y. (2021). A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation. Cell, 184(16), 4284-4298.e27. https://doi.org/10.1016/j.cell.2021.06.009 - #, %

19. Dorone, Y., Boeynaems, S., & Rhee, S. Y. (2021). Live imaging Arabidopsis thaliana embryos under different hydration conditions. STAR Protocols, 2(4), 101025. https://doi.org/10.1016/j.xpro.2021.101025 - #, %

20. Eckardt, N. A., Ainsworth, E. A., Bahuguna, R. N., Broadley, M. R., Busch, W., Carpita, N. C., Castrillo, G., Chory, J., DeHaan, L. R., Duarte, C. M., Henry, A., Jagadish, S. V. K., Langdale, J. A., Leakey, A. D. B., Liao, J. C., Lu, K.-J., McCann, M. C., McKay, J. K., Odeny, D. A., … Zhang, X. (2023). Climate change challenges, plant science solutions. The Plant Cell, 35(1), 24–66. https://doi.org/10.1093/plcell/koac303 - %

21. Ellsworth, P. Z., Ellsworth, P. V., & Cousins, A. B. (2017). Relationship of leaf oxygen and carbon isotopic composition with transpiration efficiency in the C4 grasses Setaria viridis and Setaria italica. Journal of Experimental Botany, 68(13), 3513–3528. https://doi.org/10.1093/jxb/erx185 - #

22. Ellsworth, P. V., Ellsworth, P. Z., Koteyeva, N. K., & Cousins, A. B. (2018). Cell wall properties in Oryza sativa influence mesophyll CO 2 conductance. New Phytologist, 219(1), 66–76. https://doi.org/10.1111/nph.15173 - #

23. Ellsworth, P. Z., & Cousins, A. B. (2016). Carbon isotopes and water use efficiency in C4 plants. Current Opinion in Plant Biology, 31, 155–161. https://doi.org/10.1016/j.pbi.2016.04.006 - #

24. Ellsworth, P. Z., Feldman, M. J., Baxter, I., & Cousins, A. B. (2020). A genetic link between leaf carbon isotope composition and whole‐plant water use efficiency in the C 4 grass Setaria. The Plant Journal, 102(6), 1234–1248. https://doi.org/10.1111/tpj.14696 - #

25. Emami, S., Yee, M., & Dinneny, J. R. (2013). A robust family of Golden Gate Agrobacterium vectors for plant synthetic biology. Frontiers in Plant Science, 4. https://doi.org/10.3389/fpls.2013.00339 - #

26. Fahlgren, N., Feldman, M., Gehan, M. A., Wilson, M. S., Shyu, C., Bryant, D. W., Hill, S. T., McEntee, C. J., Warnasooriya, S. N., Kumar, I., Ficor, T., Turnipseed, S., Gilbert, K. B., Brutnell, T. P., Carrington, J. C., Mockler, T. C., & Baxter, I. (2015). A Versatile Phenotyping System and Analytics Platform Reveals Diverse Temporal Responses to Water Availability in Setaria. Molecular Plant, 8(10), 1520–1535. https://doi.org/10.1016/j.molp.2015.06.005 - #

27. Feldman, M. J., Paul, R. E., Banan, D., Barrett, J. F., Sebastian, J., Yee, M.-C., Jiang, H., Lipka, A. E., Brutnell, T. P., Dinneny, J. R., Leakey, A. D. B., & Baxter, I. (2017). Time dependent genetic analysis links field and controlled environment phenotypes in the model C4 grass Setaria. PLOS Genetics, 13(6), e1006841. https://doi.org/10.1371/journal.pgen.1006841 - #

28. Feldman, M. J., Ellsworth, P. Z., Fahlgren, N., Gehan, M. A., Cousins, A. B., & Baxter, I. (2018). Components of Water Use Efficiency Have Unique Genetic Signatures in the Model C 4 Grass Setaria. Plant Physiology, 178(2), 699–715. https://doi.org/10.1104/pp.18.00146 - #

29. Gehan, M. A., Greenham, K., Mockler, T. C., & McClung, C. R. (2015). Transcriptional networks—Crops, clocks, and abiotic stress. Current Opinion in Plant Biology, 24, 39–46. https://doi.org/10.1016/j.pbi.2015.01.004 - #

30. Gehan, M. A., Fahlgren, N., Abbasi, A., Berry, J. C., Callen, S. T., Chavez, L., Doust, A. N., Feldman, M. J., Gilbert, K. B., Hodge, J. G., Hoyer, J. S., Lin, A., Liu, S., Lizárraga, C., Lorence, A., Miller, M., Platon, E., Tessman, M., & Sax, T. (2017). PlantCV v2: Image analysis software for high-throughput plant phenotyping. PeerJ, 5, e4088. https://doi.org/10.7717/peerj.4088 - #

31. Gil‐Humanes, J., Wang, Y., Liang, Z., Shan, Q., Ozuna, C. V., Sánchez‐León, S., Baltes, N. J., Starker, C., Barro, F., Gao, C., & Voytas, D. F. (2017). High‐efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR /Cas9. The Plant Journal, 89(6), 1251–1262. https://doi.org/10.1111/tpj.13446 - #

32. Ginzburg, D. N., Bossi, F., & Rhee, S. Y. (2022). Uncoupling differential water usage from drought resistance in a dwarf Arabidopsis mutant. Plant Physiology, 190(4), 2115–2121. https://doi.org/10.1093/plphys/kiac411 - #, %

33. Hague, J., Nelson, K., Yonchak, A., & Kausch, A. P. (2022). qPCR Methods for the Quantification of Transgene Insert Copy Number and Zygosity Using the Comparative Ct Method in Transgenic Sorghum bicolor L. Moench. In A. Bilichak & J. D. Laurie (Eds.), Accelerated Breeding of Cereal Crops (pp. 251–268). Springer US. https://doi.org/10.1007/978-1-0716-1526-3_13

34. Hawkins, C., Ginzburg, D., Zhao, K., Dwyer, W., Xue, B., Xu, A., Rice, S., Cole, B., Paley, S., Karp, P., & Rhee, S. Y. (2021). Plant Metabolic Network 15: A resource of genome‐wide metabolism databases for 126 plants and algae. Journal of Integrative Plant Biology, 63(11), 1888–1905. https://doi.org/10.1111/jipb.13163 - #, %

35. Huang, H., Gehan, M. A., Huss, S. E., Alvarez, S., Lizarraga, C., Gruebbling, E. L., Gierer, J., Naldrett, M. J., Bindbeutel, R. K., Evans, B. S., Mockler, T. C., & Nusinow, D. A. (2017). Cross‐species complementation reveals conserved functions for EARLY FLOWERING 3 between monocots and dicots. Plant Direct, 1(4), e00018. https://doi.org/10.1002/pld3.18 - #

36. Huang, P., Feldman, M., Schroder, S., Bahri, B. A., Diao, X., Zhi, H., Estep, M., Baxter, I., Devos, K. M., & Kellogg, E. A. (2014). Population genetics of Setaria viridis , a new model system. Molecular Ecology, 23(20), 4912–4925. https://doi.org/10.1111/mec.12907 - #

37. Huang, P., & Brutnell, T. P. (2016). A synthesis of transcriptomic surveys to dissect the genetic basis of C4 photosynthesis. Current Opinion in Plant Biology, 31, 91–99. https://doi.org/10.1016/j.pbi.2016.03.014 - #

38. Huang, P., Jiang, H., Zhu, C., Barry, K., Jenkins, J., Sandor, L., Schmutz, J., Box, M. S., Kellogg, E. A., & Brutnell, T. P. (2017). Sparse panicle1 is required for inflorescence development in Setaria viridis and maize. Nature Plants, 3(5), 17054. https://doi.org/10.1038/nplants.2017.54 - #

39. Huang, P., Shyu, C., Coelho, C. P., Cao, Y., & Brutnell, T. P. (2016). Setaria viridis as a Model System to Advance Millet Genetics and Genomics. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01781 - #

40. Jansson, C., Vogel, J., Hazen, S., Brutnell, T., & Mockler, T. (2018). Climate-smart crops with enhanced photosynthesis. Journal of Experimental Botany, 69(16), 3801–3809. https://doi.org/10.1093/jxb/ery213 - %

41. Jiang, H., Barbier, H., & Brutnell, T. (2013). Methods for Performing Crosses in Setaria viridis, a New Model System for the Grasses. Journal of Visualized Experiments, 80, 50527. https://doi.org/10.3791/50527 - #

42. Kausch, A. P., Nelson-Vasilchik, K., Hague, J., Mookkan, M., Quemada, H., Dellaporta, S., Fragoso, C., & Zhang, Z. J. (2019). Edit at will: Genotype independent plant transformation in the era of advanced genomics and genome editing. Plant Science, 281, 186–205. https://doi.org/10.1016/j.plantsci.2019.01.006 - %

43. Kausch, A. P., Nelson-Vasilchik, K., Tilelli, M., & Hague, J. P. (2021). Maize tissue culture, transformation, and genome editing. In Vitro Cellular & Developmental Biology - Plant, 57(4), 653–671. https://doi.org/10.1007/s11627-021-10196-y - %

44. Kausch, A. P., Wang, K., Kaeppler, H. F., & Gordon-Kamm, W. (2021). Maize transformation: History, progress, and perspectives. Molecular Breeding, 41(6), 38. https://doi.org/10.1007/s11032-021-01225-0

45. Khakhar, A., Starker, C. G., Chamness, J. C., Lee, N., Stokke, S., Wang, C., Swanson, R., Rizvi, F., Imaizumi, T., & Voytas, D. F. (2020). Building customizable auto-luminescent luciferase-based reporters in plants. eLife, 9, e52786. https://doi.org/10.7554/eLife.52786 - %

46. Khakhar, A., Wang, C., Swanson, R., Stokke, S., Rizvi, F., Sarup, S., Hobbs, J., & Voytas, D. F. (2021). VipariNama: RNA viral vectors to rapidly elucidate the relationship between gene expression and phenotype. Plant Physiology, 186(4), 2222–2238. https://doi.org/10.1093/plphys/kiab197 - %

47. Kolbe, A. R., & Cousins, A. B. (2018). Mesophyll conductance in Zea mays responds transiently to CO 2 availability: Implications for transpiration efficiency in C 4 crops. New Phytologist, 217(4), 1463–1474. https://doi.org/10.1111/nph.14942 - #

48. Kolbe, A. R., Brutnell, T. P., Cousins, A. B., & Studer, A. J. (2018). Carbonic Anhydrase Mutants in Zea mays Have Altered Stomatal Responses to Environmental Signals. Plant Physiology, 177(3), 980–989. https://doi.org/10.1104/pp.18.00176 - #

49. Kolbe, A. R., Studer, A. J., & Cousins, A. B. (2018). Biochemical and transcriptomic analysis of maize diversity to elucidate drivers of leaf carbon isotope composition. Functional Plant Biology, 45(5), 489. https://doi.org/10.1071/FP17265 - #

50. Kolbe, A. R., Studer, A. J., Cornejo, O. E., & Cousins, A. B. (2019). Insights from transcriptome profiling on the non-photosynthetic and stomatal signaling response of maize carbonic anhydrase mutants to low CO2. BMC Genomics, 20(1), 138. https://doi.org/10.1186/s12864-019-5522-7 - #

51. Lamour, J., Davidson, K. J., Ely, K. S., Le Moguédec, G., Leakey, A. D. B., Li, Q., Serbin, S. P., & Rogers, A. (2022). An improved representation of the relationship between photosynthesis and stomatal conductance leads to more stable estimation of conductance parameters and improves the goodness‐of‐fit across diverse data sets. Global Change Biology, 28(11), 3537–3556. https://doi.org/10.1111/gcb.16103 - %

52. LaRue, T., Lindner, H., Srinivas, A., Exposito-Alonso, M., Lobet, G., & Dinneny, J. R. (2022). Uncovering natural variation in root system architecture and growth dynamics using a robotics-assisted phenomics platform. eLife, 11, e76968. https://doi.org/10.7554/eLife.76968 - #, %

53. Leakey, A. D. B., Ferguson, J. N., Pignon, C. P., Wu, A., Jin, Z., Hammer, G. L., & Lobell, D. B. (2019). Water Use Efficiency as a Constraint and Target for Improving the Resilience and Productivity of C 3 and C 4 Crops. Annual Review of Plant Biology, 70(1), 781–808. https://doi.org/10.1146/annurev-arplant-042817-040305

54. Lin, F., Lazarus, E. Z., & Rhee, S. Y. (2020). QTG-Finder2: A Generalized Machine-Learning Algorithm for Prioritizing QTL Causal Genes in Plants. G3 Genes|Genomes|Genetics, 10(7), 2411–2421. https://doi.org/10.1534/g3.120.401122 - #, %

55. Liu, D., Myers, E. A., Xuan, S., Prichard, L. E., Donahue, L. I., Ellison, E. E., Starker, C. G., & Voytas, D. F. (2024). Heritable, multinucleotide deletions in plants using viral delivery of a repair exonuclease and guide RNAs. Plant Physiology, kiae015. https://doi.org/10.1093/plphys/kiae015 - %

56. Mamidi, S., Healey, A., Huang, P., Grimwood, J., Jenkins, J., Barry, K., Sreedasyam, A., Shu, S., Lovell, J. T., Feldman, M., Wu, J., Yu, Y., Chen, C., Johnson, J., Sakakibara, H., Kiba, T., Sakurai, T., Tavares, R., Nusinow, D. A., … Kellogg, E. A. (2020). A genome resource for green millet Setaria viridis enables discovery of agronomically valuable loci. Nature Biotechnology, 38(10), 1203–1210. https://doi.org/10.1038/s41587-020-0681-2 - #

57. Mei, Y., Beernink, B. M., Ellison, E. E., Konečná, E., Neelakandan, A. K., Voytas, D. F., & Whitham, S. A. (2019). Protein expression and gene editing in monocots using foxtail mosaic virus vectors. Plant Direct, 3(11), e00181. https://doi.org/10.1002/pld3.181 - %

58. Mookkan, M., Nelson‐Vasilchik, K., Hague, J., Kausch, A., & Zhang, Z. J. (2018). Morphogenic Regulator‐Mediated Transformation of Maize Inbred B73. Current Protocols in Plant Biology, 3(4), e20075. https://doi.org/10.1002/cppb.20075

59. Nam, H.-I., Shahzad, Z., Dorone, Y., Clowez, S., Zhao, K., Bouain, N., Lay-Pruitt, K. S., Cho, H., Rhee, S. Y., & Rouached, H. (2021). Interdependent iron and phosphorus availability controls photosynthesis through retrograde signaling. Nature Communications, 12(1), 7211. https://doi.org/10.1038/s41467-021-27548-2 - #, %

60. Nasti, R. A., & Voytas, D. F. (2021). Attaining the promise of plant gene editing at scale. Proceedings of the National Academy of Sciences, 118(22), e2004846117. https://doi.org/10.1073/pnas.2004846117 - %

61. Nelson‐Vasilchik, K., Hague, J., Mookkan, M., Zhang, Z. J., & Kausch, A. (2018). Transformation of Recalcitrant Sorghum Varieties Facilitated by Baby Boom and Wuschel2. Current Protocols in Plant Biology, 3(4), e20076. https://doi.org/10.1002/cppb.20076 - %

62. Nelson-Vasilchik, K., Hague, J. P., Tilelli, M., & Kausch, A. P. (2022). Rapid transformation and plant regeneration of sorghum (Sorghum bicolor L.) mediated by altruistic Baby boom and Wuschel2. In Vitro Cellular & Developmental Biology - Plant, 58(3), 331–342. https://doi.org/10.1007/s11627-021-10243-8

63. Om, K., Arias, N. N., Jambor, C. C., MacGregor, A., Rezachek, A. N., Haugrud, C., Kunz, H.-H., Wang, Z., Huang, P., Zhang, Q., Rosnow, J., Brutnell, T. P., Cousins, A. B., & Chastain, C. J. (2022). Pyruvate, phosphate dikinase regulatory protein impacts light response of C4 photosynthesis in Setaria viridis. Plant Physiology, 190(2), 1117–1133. https://doi.org/10.1093/plphys/kiac333 - %

64. Pignon, C. P., Fernandes, S. B., Valluru, R., Bandillo, N., Lozano, R., Buckler, E., Gore, M. A., Long, S. P., Brown, P. J., & Leakey, A. D. B. (2021). Phenotyping stomatal closure by thermal imaging for GWAS and TWAS of water use efficiency-related genes. Plant Physiology, 187(4), 2544–2562. https://doi.org/10.1093/plphys/kiab395 - %

65. Prakash, P. T., Banan, D., Paul, R. E., Feldman, M. J., Xie, D., Freyfogle, L., Baxter, I., & Leakey, A. D. B. (2021). Correlation and co-localization of QTL for stomatal density, canopy temperature, and productivity with and without drought stress in Setaria. Journal of Experimental Botany, 72(13), 5024–5037. https://doi.org/10.1093/jxb/erab166 - #, %

66. Ragland, C. J., Shih, K. Y., & Dinneny, J. R. (2024). Choreographing root architecture and rhizosphere interactions through synthetic biology. Nature Communications, 15(1), 1370. https://doi.org/10.1038/s41467-024-45272-5 - @

67. Rellán-Álvarez, R., Lobet, G., Lindner, H., Pradier, P.-L., Sebastian, J., Yee, M.-C., Geng, Y., Trontin, C., LaRue, T., Schrager-Lavelle, A., Haney, C. H., Nieu, R., Maloof, J., Vogel, J. P., & Dinneny, J. R. (2015). GLO-Roots: An imaging platform enabling multidimensional characterization of soil-grown root systems. eLife, 4, e07597. https://doi.org/10.7554/eLife.07597 - #

68. Rellán-Álvarez, R., Lobet, G., & Dinneny, J. R. (2016). Environmental Control of Root System Biology. Annual Review of Plant Biology, 67(1), 619–642. https://doi.org/10.1146/annurev-arplant-043015-111848 - #

69. Rhee, S. Y., Birnbaum, K. D., & Ehrhardt, D. W. (2019). Towards Building a Plant Cell Atlas. Trends in Plant Science, 24(4), 303–310. https://doi.org/10.1016/j.tplants.2019.01.006 - #, %

70. Rouached, H., & Rhee, S. Y. (2017). System-level understanding of plant mineral nutrition in the big data era. Current Opinion in Systems Biology, 4, 71–77. https://doi.org/10.1016/j.coisb.2017.07.008 - #

71. Schläpfer, P., Zhang, P., Wang, C., Kim, T., Banf, M., Chae, L., Dreher, K., Chavali, A. K., Nilo-Poyanco, R., Bernard, T., Kahn, D., & Rhee, S. Y. (2017). Genome-Wide Prediction of Metabolic Enzymes, Pathways, and Gene Clusters in Plants. Plant Physiology, 173(4), 2041–2059. https://doi.org/10.1104/pp.16.01942 - #

72. Sebastian, J., Wong, M. K., Tang, E., & Dinneny, J. R. (2014). Methods to Promote Germination of Dormant Setaria viridis Seeds. PLoS ONE, 9(4), e95109. https://doi.org/10.1371/journal.pone.0095109 - #

73. Sebastian, J., Yee, M.-C., Goudinho Viana, W., Rellán-Álvarez, R., Feldman, M., Priest, H. D., Trontin, C., Lee, T., Jiang, H., Baxter, I., Mockler, T. C., Hochholdinger, F., Brutnell, T. P., & Dinneny, J. R. (2016). Grasses suppress shoot-borne roots to conserve water during drought. Proceedings of the National Academy of Sciences, 113(31), 8861–8866. https://doi.org/10.1073/pnas.1604021113 - #

74. Shyu, C., & Brutnell, T. P. (2015). Growth–defence balance in grass biomass production: The role of jasmonates. Journal of Experimental Botany, 66(14), 4165–4176. https://doi.org/10.1093/jxb/erv011 - #

75. Silva, T. N., Thomas, J. B., Dahlberg, J., Rhee, S. Y., & Mortimer, J. C. (2022). Progress and challenges in sorghum biotechnology, a multipurpose feedstock for the bioeconomy. Journal of Experimental Botany, 73(3), 646–664. https://doi.org/10.1093/jxb/erab450 - %

76. Sorgini, C. A., Roberts, L. M., Sullivan, M., Cousins, A. B., Baxter, I., & Studer, A. J. (2021). The genetic architecture of leaf stable carbon isotope composition in Zea mays and the effect of transpiration efficiency on leaf elemental accumulation. G3 Genes|Genomes|Genetics, 11(9), jkab222. https://doi.org/10.1093/g3journal/jkab222 - %

77. Sreedasyam, A., Plott, C., Hossain, M. S., Lovell, J. T., Grimwood, J., Jenkins, J. W., Daum, C., Barry, K., Carlson, J., Shu, S., Phillips, J., Amirebrahimi, M., Zane, M., Wang, M., Goodstein, D., Haas, F. B., Hiss, M., Perroud, P.-F., Jawdy, S. S., … Schmutz, J. (2023). JGI Plant Gene Atlas: An updateable transcriptome resource to improve functional gene descriptions across the plant kingdom. Nucleic Acids Research, 51(16), 8383–8401. https://doi.org/10.1093/nar/gkad616 - #, %

78. Therby-Vale, R., Lacombe, B., Rhee, S. Y., Nussaume, L., & Rouached, H. (2022). Mineral nutrient signaling controls photosynthesis: Focus on iron deficiency-induced chlorosis. Trends in Plant Science, 27(5), 502–509. https://doi.org/10.1016/j.tplants.2021.11.005 - #, %

79. Viana, G. W., Scharwies, J. D., & Dinneny, J. R. (2022). Deconstructing the root system of grasses through an exploration of development, anatomy and function. Plant, Cell & Environment, 45(3), 602–619. https://doi.org/10.1111/pce.14270 - #

80. Walsh, J. R., Schaeffer, M. L., Zhang, P., Rhee, S. Y., Dickerson, J. A., & Sen, T. Z. (2016). The quality of metabolic pathway resources depends on initial enzymatic function assignments: A case for maize. BMC Systems Biology, 10(1), 129. https://doi.org/10.1186/s12918-016-0369-x - #

81. Wang, M., Ellsworth, P. Z., Zhou, J., Cousins, A. B., & Sankaran, S. (2016). Evaluation of water-use efficiency in foxtail millet (Setaria italica) using visible-near infrared and thermal spectral sensing techniques. Talanta, 152, 531–539. https://doi.org/10.1016/j.talanta.2016.01.062 - #

82. Warnasooriya, S. N., & Brutnell, T. P. (2014). Enhancing the productivity of grasses under high-density planting by engineering light responses: From model systems to feedstocks. Journal of Experimental Botany, 65(11), 2825–2834. https://doi.org/10.1093/jxb/eru221 - #

83. Weiss, T., Wang, C., Kang, X., Zhao, H., Elena Gamo, M., Starker, C. G., Crisp, P. A., Zhou, P., Springer, N. M., Voytas, D. F., & Zhang, F. (2020). Optimization of multiplexed CRISPR/Cas9 system for highly efficient genome editing in Setaria viridis. The Plant Journal, 104(3), 828–838. https://doi.org/10.1111/tpj.14949 - %

84. Weissmann, S., Huang, P., Wiechert, M. A., Furuyama, K., Brutnell, T. P., Taniguchi, M., Schnable, J. C., & Mockler, T. C. (2021). DCT4—A New Member of the Dicarboxylate Transporter Family in C4 Grasses. Genome Biology and Evolution, 13(2), evaa251. https://doi.org/10.1093/gbe/evaa251 - %

85. Xue, B., & Rhee, S. Y. (2023). Status of genome function annotation in model organisms and crops. Plant Direct, 7(7), e499. https://doi.org/10.1002/pld3.499 - %, @

86. Yang, J., Bertolini, E., Braud, M., Preciado, J., Chepote, A., Jiang, H., & Eveland, A. L. (2021). The SvFUL2 transcription factor is required for inflorescence determinacy and timely flowering in Setaria viridis. Plant Physiology, 187(3), 1202–1220. https://doi.org/10.1093/plphys/kiab169 - #

87. Zengler, K., Hofmockel, K., Baliga, N. S., Behie, S. W., Bernstein, H. C., Brown, J. B., Dinneny, J. R., Floge, S. A., Forry, S. P., Hess, M., Jackson, S. A., Jansson, C., Lindemann, S. R., Pett-Ridge, J., Maranas, C., Venturelli, O. S., Wallenstein, M. D., Shank, E. A., & Northen, T. R. (2019). EcoFABs: Advancing microbiome science through standardized fabricated ecosystems. Nature Methods, 16(7), 567–571. https://doi.org/10.1038/s41592-019-0465-0 - %

88. Zhao, K., Kong, D., Jin, B., Smolke, C. D., & Rhee, S. Y. (2021). A novel bivalent chromatin associates with rapid induction of camalexin biosynthesis genes in response to a pathogen signal in Arabidopsis. eLife, 10, e69508. https://doi.org/10.7554/eLife.69508 - #, %

89. Zhao, K., & Rhee, S. Y. (2022). Omics-guided metabolic pathway discovery in plants: Resources, approaches, and opportunities. Current Opinion in Plant Biology, 67, 102222. https://doi.org/10.1016/j.pbi.2022.102222 - #, %

90. Zhao, K., & Rhee, S. Y. (2023). Interpreting omics data with pathway enrichment analysis. Trends in Genetics, 39(4), 308–319. https://doi.org/10.1016/j.tig.2023.01.003 - %, @

91. Zheng, Y., Jiao, C., Sun, H., Rosli, H. G., Pombo, M. A., Zhang, P., Banf, M., Dai, X., Martin, G. B., Giovannoni, J. J., Zhao, P. X., Rhee, S. Y., & Fei, Z. (2016). iTAK: A Program for Genome-wide Prediction and Classification of Plant Transcription Factors, Transcriptional Regulators, and Protein Kinases. Molecular Plant, 9(12), 1667–1670. https://doi.org/10.1016/j.molp.2016.09.014 - #

92. Zhu, C., Yang, J., & Shyu, C. (2017). Setaria Comes of Age: Meeting Report on the Second International Setaria Genetics Conference. Frontiers in Plant Science, 8, 1562. https://doi.org/10.3389/fpls.2017.01562 - #

93. Ziegler, G. R., Hartsock, R. H., & Baxter, I. (2015). Zbrowse: An interactive GWAS results browser. PeerJ Computer Science, 1, e3. https://doi.org/10.7717/peerj-cs.3 - #